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Context: Squirrel and Cryptographic assumptions

Protocol

Cryptographic assumptions
hash, encryption . . .

Squirrel
(Logic and

proof assistant)

formulas, axioms, proof system. . .

?
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Cryptographic assumptions

A

O1

.

.

.
Og

Gb

b ∈

{Left, Right}

Definition (Indinstinguishability)

For any polynomial-time and randomized algorithm A,

|Pr(AGLeft = 1)− Pr(AGRight = 1)|

is negligible (i.e., roughly exponentially small in the length of the keys).
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Example: PRF games

Intuition: a pseudo random function is a function that “seems” random.

Example (PRF games)
Game GLeft

Init :

k $←

log := []

Hash(x) :

log := x :: log

return h(x , k)

Challenge(x) :

r $←
if x /∈ log

log := x :: log

return h(x,k)

Game GRigh

Init :

k $←

log := []

Hash(x) :

log := x :: log

return h(x , k)

Challenge(x) :

r $←

if x /∈ log

log := x :: log

return r
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Example: PRF games

Example (PRF pair of games)

Game GPRF Init :

k $←;

l := [];

Hash(x) :

L := x :: L

h(x , k)

Challenge(x) :

r $←
if x /∈ L

L := x :: L;

#(h(x,k),r)
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Playing with PRF: sequence of messages

GPRF A

m1

h(m1, k)

m2(6= m1)

#(h(m2, k), r)

equiv(

m1, h(m1, k)

,m2,#(h(m2, k), r))

:= ( (m1, h(m1, k),m2, h(m2, k)),

(m1, h(m1, k),m2, r) )
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Playing with PRF: sequence of messages

GPRF A

m1

h(m1, k)

m2( 6= m1)

#(h(m2, k), r)

equiv(m1, h(m1, k),m2,#(h(m2, k), r))

:= ( (m1, h(m1, k),m2, h(m2, k)),

(m1, h(m1, k),m2, r) )

If there exists an adversary that can distinguish between this two
sequences of messages, then the PRF assumption doesn’t hold.
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Terms and formulas

Definition (Terms)

Intuition: terms represent messages

t := | r (names, repr. samplings)

| f (t1, . . . , tn) (function application)

| #(t0, t1) (left/right difference)

Definition (Equivalence formulas)

equiv(~t)
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PRF axiom schema

Question: is this formula a consequence of PRF assumption?

equiv((m1, h(m1, k),m2,#(h(m2, k), r)))

m1 = k: adversary must not directly access the key.

m1 = m2: forbidden by the game.

m1 = r: r must be fresh.

Definition (PRF axiom schema)

For all terms ~t verifying specific syntactic properties:

equiv( ~t,#(h(m, k), r) )
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Problems

Problems with this method
Ad hoc and manual work for each cryptographic axioms:

Axiom schema design

Correctness proof (understand the logic and its semantics)

Implementation (understand the code)
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Changing point of view

Input:
m1, h(m1, k),m2, h(m1, k)

GPRF A

m1

h(m1, k)

m2

#(h(m2, k), r)

Question: does there exists such an A?
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Contributions

Theoritical framework to reduce equivalences to cryptographic
assumption: extended notion of bi-deduction [BDKM22].

Proof system for bi-deduction

Application: implementation of Squirrel tactic crypto
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Bi-deduction

Construction of then bi-deduction judgement: simulator

B~v

means that there exists an adversary S such that SG () = ~v .

Link between Bi-deduction and Equivalence

If an adversary can compute ~v then the formula equiv(~v) holds.

Bi-deduction
B~v

equiv(~v)
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What do we need ?

Goal: Framework for bi-deduction and associated proof system

Adversaries’ capabilities ?
An adversary can:

compute deterministic functions

draw samplings

interact with the game: oracles calls.

Definition

Function application: inference rule

FA
B~t adv(f )

Bf (~t)

S :

~xt := St()

y := f (~xt)

return y
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Samplings

Example

h(n, s), h(h(n, s), k)

simulator game

We need to keep track of the owner of each sampling.

Definition (Tags)

Tag = {TS , Tglob
G,key , . . . }

n← TS

s← TS

k← T
glob
G,key
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Extending bi-deduction with constraints

Adding sampling tagging

C records who sampled what: C : B~v

Definition (Adversary samplings)

Adv sampling
C : B~v

C , 〈n, TS〉 : Bn, ~v

S :

~y := Sv ()

x := $

return x , ~y

∅ : B∅
〈s, TS〉 : Bs

Adv sampling

〈n, TS〉, 〈s, TS〉 : Bn, s
Adv sampling

〈n, TS〉, 〈s, TS〉 : Bh(n, s)
FA
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Oracle calls on example

Definition (Oracle rule: instantiated for hash oracle)

Hash
C : Bm, ~v

C , 〈k, Tglob
G,key 〉 : Bh(m, k), ~v

S :

xm, ~xv := Sm,v ()

x :=OHash(xm)

return x , ~xv

Example

h(n, s), h(h(n, s), k)

...

C : Bh(n, s)

C , 〈k, Tglob
G,key 〉 : Bh(h(n, s), k)

Hash
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Oracle rule: Challenge

Oracle rule instantiated for challenge

θ, ϕ,

C : Bm, ~v

{ϕ}OChallenge(m){ψ}
θ, ψ,

C , 〈r, Tloc
G 〉, 〈k, T

glob
G,key 〉 : B#(h(m, k), r), ~v

m h(m, k) #(h(m, k), r)

log = [m] log = [m,m]?

Adding pre and post conditions

ϕ,ψ;C : B~v
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Consistency of taggings

C: registers randomness usage.

We want to ensure:

Not two samples for one “role” (e.g., k ← T
glob
G,key , k

′ ← T
glob
G,key )

No sample owned by both the adversary and the oracles

Freshness of local random sampling (e.g., r)

Definition (validity of C )

Valid(C )
def
= Uniqueness(C ) ∧ Ownership(C ) ∧ Freshness(C )
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Coming back to the judgment

Bideduction judgmenent

For all conditions ϕ,ψ, constraints C , term ~v :

ϕ,ψ;C : B~v iff

if Valid(C ) there exists a G -adversary S such that
for all memory µ satisfying ϕ, LSMµ() = µ′

µ′ satisfy ψ

µ′[res] = ~v
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Semantics

Denotational semantic for adversaries and terms with early-random
samplings.

LSMηµ = X left
S ,X right

S

J~vKη = X left
v ,X right

v

Different randomness sources:

X
left/right
S : p 7→ · · ·

X
left/right
v : ρ 7→ · · ·

Equality of distribution: Prp(X b
S = x) = Prρ(X b

s = x)
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Coupling

Lifting through couplings:

X left
S ≈ X right

S

| |
=d =d

| |
X left
v ∼ X right

v

(proof: coupling built from C )
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Implementation : game declarations

A language for games :
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Implementation: tactic crypto

Goal-directed proof-search procedure, based on the proof system.

Langage to describe game memory.

Ad hoc handling of induction for recursive terms.
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Case studies

Protocol Hypothesis Properties

Basic Hash EUF-MAC and PRF Unlinkability

Hash Lock PRF Strong secrecy

Private Authentification CCA$ Anonymity

NSL proof step CCA2 Strong secrecy
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Conclusion

Contributions:

Formal framework linking games, adversaries, and formulas

Bi-deduction judgment to capture adversaries interacting with a game

Proof system for this judgment

Implementation: proof search automation and Squirrel tactics

Validation through various case studies

Future work:

Larger case study: FOO e-voting protocol

Limitation in the theory.

Improve tactic heuristics (time insentive invariant).

(Submitted work to CSF’24.)
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